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Recipe of the Day!

Brought to you by Dr. Erin Lake!
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Administrivia

Sign up for a group! (on Canvas)

April 19th, guest lecture by Jana Lipkova on Deep Learning for Pathology

(over Zoom, but we’ll probably be here in person as well)
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Internship opportunity at Mayo Clinic!

Opportunity to work in the AI division of the ENT Department at Mayo Clinic. (Best hospital 
in the world!)

Paid summer internship, available from mid-May to mid-August (flexible). Hybrid (in-
person for a few weeks at Mayo Clinic, then remote the rest of the summer).

Mentorship team including Data Scientists/Informaticians/Industrial Engineers.

Operations research / industrial engineering / optimization / consulting experience valued.

Work will focus on optimizing operating room planning, with opportunities for several side 
projects including CNN development, scientific publications, etc.

If interested email CV with a cover email to santiagoromerobrufau@hsph.harvard.edu 4

mailto:santiagoromerobrufau@hsph.harvard.edu
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Fine-tuning
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Fine-tuning

◎ Fine-tuning consists of unfreezing a few of the top layers of a frozen 
model base used for feature extraction, and jointly training both the 
newly added part of the model (the dense layers used to classify), and 
these top unfrozen layers

○ This slightly adjusts the more abstract representations of the 
pretrained model in an effort to make them more relevant for the 
problem at hand

○ It is only possible to fine-tune the top layers of the 
convolutional base, and only after the added classifier layers have 
been trained 7



Steps

◎ Add your custom network on top of an obtained pretrained base 
network

◎ Freeze the base network
◎ Train the part you added
◎ Unfreeze some layers in the base network
◎ Jointly train both the unfrozen layers and top layers

We did the first 3 steps when we did feature extraction
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Fine-tuning

◎ In practice it is good to unfreeze 2-3 top layers of the base

◎ The more layers you unfreeze, the more parameters that need to 
be trained, and the higher the risk of overfitting (longer to train as 
well)

◎ Note that earlier layers in the base encode more generic, 
reusable features, and layers higher up encode more 
specialized features. Thus, it's more useful to fine-tune layers 
higher up in the base
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We only unfreeze and fine-
tune the last block of layers.
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We need to say which 
pretrained blocks (and 
layers) should be kept frozen 
(make untrainable) and 
which one we want to 
unfreeze (make trainable).
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Visualizing what 
CNNs Learn



Visualizing What CNNs Learn

◎ It is possible to visualize and interpret the learned representations of 
your CNN

◎ 3 of the most useful visualizations are:
○ Visualizing intermediate activations

◉ Useful for understanding how successive layers transform their 
input and getting an idea of the meaning of individual filters

○ Visualizing filters
◉ Useful for understanding what visual pattern or concept each 

filter in a CNN is receptive to
○ Visualizing heatmaps of class activations in an image

◉ Useful for understanding which parts of an image were 
identified as belonging to a given class

13



14

Visualizing 
Intermediate 

Outputs



Visualizing Intermediate Outputs

◎ Colab notebook
◎ Display the feature maps that are output by various convolution and pooling layers
◎ You should look at each channel separately
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https://drive.google.com/file/d/13lqmkrEEg2OuKNPiXxE9EsehPKxkp-gw/view?usp=sharing


Visualizing Intermediate Outputs
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We’ll visualize what patterns  
this filter is picking up 

This will save the outputs or “activations” 
for each filter in every layer

Let’s look at the filters in the 
first layer



Visualizing Intermediate Outputs
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Diagonal/rounded edges filter?



Visualizing Intermediate Outputs
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“Yellow edges” filter?



Visualizing Intermediate Outputs

◎ We can also look at what pattern each filter in every layer is picking up 
on
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Visualizing Intermediate Outputs
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Visualizing Intermediate Outputs
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Visualizing Intermediate Outputs
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Visualizing Intermediate Outputs

23



Visualizing Intermediate Outputs
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Visualizing Intermediate Outputs

◎ The first layer acts as a collection of edge detectors

◎ The later layers contain more abstract activations that are less 
visually interpretable

◎ Deeper layers carry less information about visual contents of the 
image, and more information related to the class of the image
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Visualizing Intermediate Outputs

◎ The sparsity of the activations increases with the depth of the 
layer

◎ Blank activations mean the pattern encoded by that filter isn’t 
found in the input image
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Visualizing Filters



Visualizing Filters

◎ Shows the visual pattern that each filter is meant to respond to

◎ This is done with gradient ascent in input space: applying gradient 
descent to the value of the input image to maximize the response of a 
specific filter, starting with a blank input image

◎ The resulting image will be one that the chosen filter is maximally 
responsive to
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Visualizing Filters

◎ Steps:
○ Build a loss function that maximizes the value of a given filter in a 

given convolution layer

○ Use stochastic gradient descent to adjust the values of the input 
image in order to maximize the activation value
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Visualizing Filters

The “polka dots” filter
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Visualizing Filters

◎ Filters from the 1st convolution block
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Visualizing Filters

◎ Filters from the second convolution block
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Visualizing Filters

◎ Filters from the third convolution block
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Visualizing Filters

◎ Filters from the fourth convolution block
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Inceptionism

https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

The idea is to select a layer, and tell it to amplify what it detects
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https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html


Visualizing Filters

◎ The filters get increasingly complex and refined as you go deeper in the 
model

◎ The filters from the first layer encode single directional edges and colors

◎ The next set of filters encode simple textures made from combinations 
of edges and colors

◎ The filters in later layers resemble textures found in natural images -
eyes, feathers, leaves, etc.
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Visualizing Heatmaps 
of Class Activation



Visualizing Heatmaps of Class Activation

◎ Great for understanding which parts of an image led the network to its final 
classification

◎ Helpful for debugging the decision process

◎ This also allows you to locate specific objects in an image

◎ Called class activation map (CAM) visualization

◎ A class activation heatmap is a 2D grid of scores associated with a specific output 
class, computed for every location in an input image, indicating how important 
each location is with respect to the class under consideration
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Visualizing Heatmaps of Class Activation

◎ When we run this image of African 
elephants through the VGG16 
network, the following are the top 3 
predictions:
○ African elephant (with 92.5% 

probability)

○ Tusker (with 7% probability)

○ Indian elephant (with 0.4% probability)
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Visualizing Heatmaps of Class Activation

◎ Lighter colors (yellow, green) correspond to greater activation and 
darker colors (blue, purple) to less or no activation, allowing us to see 
which parts of the image were used for the classification
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Visualizing Heatmaps of Class Activation

◎ We can then overlap these activations with the original image to see 
exactly what and where in the image was used in classification
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Visualizing Heatmaps of Class Activation

◎ When we run this image of a Turkish 
Shepherd through the VGG16 network, 
the following are the top 3 predictions:
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Visualizing Heatmaps of Class Activation

◎ When we run this image of a Turkish 
Shepherd through the VGG16 network, 
the following are the top 3 predictions:

○ Saluki (with 65.9% probability)
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Visualizing Heatmaps of Class Activation

◎ When we run this image of a Turkish 
Shepherd through the VGG16 network, 
the following are the top 3 predictions:

○ Saluki (with 65.9% probability)

○ Whippet (with 6.3% probability)

44



Visualizing Heatmaps of Class Activation

◎ When we run this image of a Turkish 
Shepherd through the VGG16 network, 
the following are the top 3 predictions:

○ Saluki (with 65.9% probability)

○ Whippet (with 6.3% probability)

○ Labrador retriever (with 3.9% 

probability)
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Visualizing Heatmaps of Class Activation
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Visualizing Heatmaps of Class Activation
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Visualizing Heatmaps of Class Activation

◎ When we run this image of a Harvard gate through the VGG16 network, the 
following are the top 3 predictions:
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Visualizing Heatmaps of Class Activation

◎ When we run this image of a Harvard gate through the VGG16 network, the 
following are the top 3 predictions:

○ Prison (with 41.3% probability)
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Visualizing Heatmaps of Class Activation

◎ When we run this image of a Harvard gate through the VGG16 network, the 
following are the top 3 predictions:

○ Prison (with 41.3% probability)

○ Fire screen (with 10.6% probability)
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Visualizing Heatmaps of Class Activation

◎ When we run this image of a Harvard gate through the VGG16 network, the 
following are the top 3 predictions:

○ Prison (with 41.3% probability)

○ Fire screen (with 10.6% probability)

○ Monastery (with 7.7% probability)
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Visualizing Heatmaps of Class Activation
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Visualizing Heatmaps of Class Activation
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